Hello, you either have JavaScript turned off or an old version of Macromedia's Flash Player. Get the latest flash player.

Thông tin toán học
CIMPA school on "Leavitt path algebras and graph C*-algebras", (Turkey, June 29-July 12, 2015)
26/09/2014

Leavitt path algebras and graph C*-algebras

CIMPA-TURKEY research school

Nesin Mathematics Village, Sirince, Selcuk, Izmir, June 29-July 12, 2015

Graphs are combinatorial objects that sit at the core of mathematical intuition. They appear in numerous situations all throughout Mathematics and have often constituted a source of inspiration for researchers. A striking instance of this can be found within the classes of graph C*-algebras and of Leavitt path algebras. These are classes of algebras over fields that emanate from different sources in
the history yet quite possibly have a common future.

Let E be a graph, i.e. a collection of vertices and edges that connect them. Very roughly, the process by which a C*-algebra is associated to E consists of decorating the vertices with orthogonal projections on a Hilbert space H and the edges by suitable operators. The ensuing C*-subalgebra of the bounded linear operators B(H) is then the graph C*-algebra C*(E). The Leavitt path algebras, denoted L(E), are the algebraic siblings of the aforementioned graph C*-algebras and are constructed over an arbitrary field (whereas here C*-algebras will always be over the complex numbers). Both classes of algebras, L(E) and C*(E), share a beautiful interplay between highly visual properties of the graph and algebraic/analytical properties of the corresponding underlying graphs.

The aim of the Research School is to provide students with the basic as well as more advanced notions of both theories, to show some of the connections between them, to explore several of the generalizations, and to give a glimpse at the state-of-the-art in the ongoing research carried out within these fields.

Administrative and scientific coordinators

- Muge Kanuni (Düzce University, Duzce, Turkey) Địa chỉ email này đang được bảo vệ khỏi chương trình thư rác, bạn cần bật Javascript để xem nó
- Gonzalo Aranda Pino (University of Málaga, Málaga, Spain) Địa chỉ email này đang được bảo vệ khỏi chương trình thư rác, bạn cần bật Javascript để xem nó

Scientific Committee

  • Gene Abrams - University of Colorado, Colorado Springs, CO, U.S.A.
  • Pere Ara - Universitat Autònoma de Barcelona, Spain
  • Astrid an Huef - University of Otago, Dunedin, New Zealand
  • Mercedes Siles Molina - Universidad de Málaga, Málaga, Spain
  • Efim Zelmanov - University of California, San Diego, CA, U.S.A.

Local Organizing Committee

  • Songül Esin, Istanbul, Turkey
  • Müge Kanuni, Düzce University, Duzce, Turkey
  • Ayten Koç, Istanbul Kültür University, Istanbul, Turkey
  • Aslı Can Korkmaz, Nesin Mathematics Village, Izmir, Turkey
  • Serkan Sütlü, Yeditepe University, Istanbul, Turkey

Scientific Program

All the courses and talks of the Research School will be in English.

Mini Courses

1. Gene Abrams (5-hour course)
Title : Introduction to Leavitt path algebras

Abstract : In this portion of the course we will give an introduction to Leavitt path algebras. First we will look at the history of the subject, starting with the fundamental article by W.G. Leavitt in 1962, in which the first examples of these algebras arise. Then we will define the more general Leavitt path algebras : these are algebras, denoted L(E), formed from a directed graph E and a field K. We then give a number of examples of familiar algebras which are isomorphic to Leavitt path algebras. We follow this discussion by giving some of the early, fundamental results in the subject. These include the criteria on the graph E so that the algebra L(E) is simple, purely infinite simple, and finite dimensional.

2. Iain Raeburn (5-hour course)
Title : Introduction to C*-algebras with a view to graph algebras

Abstract : This series of 5 lectures will provide an overview of the subject in which the examples and selection of topics is guided by the needs of basic graph-algebra theory. They will cover the Gelfand-Naimark theorem for commutative algebras and its applications, especially to C*-algebras generated by unitary elements. There will then be a discussion of the C*-algebra of bounded operators and the noncommutative Gelfand-Naimark theorem. This will be followed by a discussion of special families of operators, including projections, isometries and partial isometries.

3. Mercedes Siles Molina (5-hour course)
Title : Structure theory of Leavitt path algebras

Abstract : The description of ideals and graded ideals of Leavitt path algebras will be the starting point of this course. We will continue by giving the structure of the ideals generated by the line points, by the vertices in cycles without exits, and by vertices in extreme cycles. These correspond to the socle, which is the locally artinian part of the Leavitt path algebra, to the locally noetherian, and to the purely infinite simple sides of the Leavitt path algebras. Primeness, primitivity and other general ring-theoretic results will be studied.

4. David Pask (5-hour course).
Title : Introduction to graph C*-algebras

Abstract : This series of lectures will provide an overview of the subject in which the examples and theory developed will be guided by the emerging interface between graph C*-algebras and Leavitt path-algebras. Topics will begin with the basic definitions, and uniqueness theorems for graph C*-algebras. Then we will discuss, with examples, the structure of graph C*-algebras given in terms of their connectivity, with topics such as : simplicity, ideal structure and pure infiniteness. Finally we will discuss higher rank graphs (or k-graphs) as an appropriate higher dimensional analogue of a directed graph which will be studied in other lectures.

5. María Corrales García (5-hour course)
Title : Introduction to K-Theory for Leavitt path algebras. Computational methods

Abstract : In the first part of the course the concepts on (non-stable) K-theory for a ring R (i.e., V(R) and K_0(R)) will be taught assuming that the audience is not familiar with this theory. Then we will focus on the case of the K-Theory of a Leavitt path algebra. In the subsequent parts of the course we will provide the student with the essentials on Mathematica and will show how to compute the K_0, the order unit, and also others invariants in the classification theory of Leavitt path algebras, such as the socle, the number of cycles without exits, etc.

6. Astrid an Huef (3-hour course) [Denoted by An Huef-I in the schedule]
Title : Equilibrium states of the C*-algebras of finite directed graphs

Abstract : An action of the real numbers on a space or a C*-algebra is used to describe the time evolution in mathematical formulations of physical systems. In systems arising in statistical and quantum mechanics, there should be many "equilibrium states’’ ; their mathematical formulation is called the KMS condition. Here I will consider the action of the real numbers on the graph algebras induced from the "gauge action’’ of the circle. To illustrate the basic ideas, I will compute the KMS states of the Cuntz algebra, which is the graph algebra of the graph with one vertex and n loops at the vertex (this work goes back to Olesen and Pedersen in 1978). Then I will show that the Toeplitz-Cuntz algebra, which is an extension of the Cuntz algebra, has many more KMS states. Finally, I will discuss the theory for the graph algebras of finite directed graphs.

7. Astrid an Huef (2-hour course) [Denoted by An Huef-II in the schedule]
Title : Analogues of Leavitt path algebras associated to higher-rank graphs

Abstract : The Leavitt path algebras are purely algebraic analogues of the C*-algebras of directed graphs. The higher-rank graph C*- algebras, introduced by Kumjian and Pask in 2000, have provided many new and interesting examples of tractable C*-algebras. Again, there is a striking connection between properties of the higher-rank graph and the algebra. In these 2 lectures, I will talk about an analogue of the Leavitt path algebras for higher-rank graphs which we call the Kumjian-Pask algebras. I will discuss how the Kumjian-Pask algebra is defined, its universal property, and the uniqueness theorems which say when a representation of this algebra is faithful.

8. Kulumani Rangaswamy (5-hour course)
Title : Leavitt path algebras with special ring theoretic properties

Abstract : Leavitt path algebras are endowed with many idempotents. In this course, we shall investigate graph-theoretic conditions under which a Leavitt path algebra belongs to some of the well-known classes of rings possessing large supply of idempotents such as von Neumann regular rings, pi-regular rings, self-injective rings, Zorn rings, and other generalized regular rings. A useful tool will be two types of direct limit constructions.

9. Pere Ara (5-hour course)
Title : Leavitt path algebras and graph C*-algebras associated to separated graphs

Abstract : A separated graph is a pair (E,C), where E is a directed graph, C is the union indexed by the vertices of the graph v in E^0 of the sets C_v, and C_v is a partition of r^-1(v) (into pairwise disjoint nonempty subsets) for every vertex v. We will introduce the theory of Leavitt path algebras of separated graphs, which has been recently developed by Goodearl and the presenter. These algebras allow to incorporate the Leavitt algebras of any type (m,n) into the theory of graph algebras. We will also outline some of the basic facts on the construction by Exel and the presenter, attaching to a finite bipartite separated graph (E,C) a partial dynamical system (\Omega(E,C), \mathbb F,\alpha) and the corresponding crossed product algebra. The theory will be illustrated with several representative examples.

10. Mark Tomforde (5-hour course).
Title : Symbolic Dynamics in the study of Leavitt path algebras and graph C*-algebras

Abstract : Shifts of finite type from the subject Symbolic Dynamics have profound interactions with the study of graph C*-algebras and Leavitt path algebras. In particular, the notion of flow equivalence for shifts of finite type has been instrumental in efforts to classify graph C*-algebras and Leavitt path algebras. In this series of talks I will introduce background on shifts of finite type and the notion of flow equivalence. I will discuss how flow equivalence for shifts of finite type has been a fundamental tool in classification of simple graph C*-algebras and simple Leavitt path algebras, and show how flow equivalence results can be applied to classify certain C*-algebras and Leavitt path algebras in terms of their K-theory groups. I’ll conclude with a discussion of how flow equivalence is related to the missing pieces needed for a complete classification of simple Leavitt path algebras of finite graphs.

11. Lia Vas (5-hour course).
Title : The role of involution in graph algebras

Abstract : Both Leavitt path and graph C algebras are equipped with involution. After a brief introduction to involutive rings, we study the impact of the presence of involution on some algebraic properties of these two classes of algebras. Whenever possible, we shall point out the similarities and differences between Leavitt path and graph C*-algebras. We shall also present a class of open conjectures related to the presence of the involution in these algebras.

12. Muge Kanuni (4-hour course).
Title : Leavitt path algebras and invariant basis property

Abstract : A ring R is said to have the Invariant Basis Number property or more simply IBN in case no two free left R-modules of different rank are isomorphic. W. G. Leavitt constructed some non-IBN algebras — what we now call Leavitt algebras — in the 1960’s. In 2005, Abrams-Aranda Pino, and Ara-Moreno-Pardo introduced the Leavitt path algebra as a quotient of a path algebra constructed on a given quiver. The Leavitt path algebra of the quiver with one vertex and n loops turns out to be the Leavitt algebra R of type (1,m), that is a non-IBN algebra where R is isomorphic to m-copies of R as a left module and not isomorphic to n-copies of R for any 1< n < m. On the other hand, there is an abundance of examples of Leavitt path algebras which have IBN. We will talk about a certain class of Leavitt path algebras, namely Cohn path algebras, which all satisfy the IBN property. Moreover, give an algorithm to decide whether a Leavitt path algebra has IBN or not.

Research Talks

1. Efim Zelmanov (1-hour research talk).
Title : Simple finitely presented groups related to Leavitt algebras

Abstract : we will discuss new examples of simple finitely presented groups and Lie algebras that arise from Leavitt and Leavitt path algebras.

2. Ayten Koç (1- hour research talk)
Title : Finite Dimensional Quotients of Leavitt Path Algebras of Separated Digraphs

Abstract : We investigate necessary and sufficient conditions for the Leavitt path algebra of a separated di(rected)graph to be finite dimensional. We give a necessary and sufficient criterion to determine whether the Leavitt path algebra of a separated digraph has a finite dimensional quotient. We also provide an algorithm to determine this in the case of a Leavitt path algebra of a finite digraph.

Deadline for registration :

February 22, 2015

Application procedure only for applicants not from Turkey.

Applicants from Turkey must contact local organizer : Muge Kanuni (Düzce University, Duzce, Turkey) Địa chỉ email này đang được bảo vệ khỏi chương trình thư rác, bạn cần bật Javascript để xem nó

Đọc tiếp...
 
Giúp người khiếm thị học toán
23/09/2014

​Giúp người khiếm thị học toán

08/09/2014 06:15 GMT+7 TT - “Cho con đi cô, cho con đi cô!” - nhiều học sinh Trường Phổ thông đặc biệt Nguyễn Đình Chiểu (TP.HCM) đồng thanh thốt lên khi cầm những mô hình toán học dành cho người khiếm thị.  

Gương mặt các em sáng bừng lên khi lần đầu tiên “cảm nhận được toán học”.

Từng có thời gian học tập và nghiên cứu tại Đức, ThS Phan Nguyễn Ái Nhi (khoa toán - tin Trường ĐH Khoa học tự nhiên, ĐHQG TP.HCM) rất tâm huyết với phương pháp “Học tập phục vụ cộng đồng” (Service learning).

Biết được khó khăn trong việc học toán của người khiếm thị, cô Ái Nhi và sinh viên lớp seminar sư phạm đã tìm đến Trường Phổ thông đặc biệt Nguyễn Đình Chiểu để tìm hiểu thêm. ... Xem tiếp trên báo Tuổi Trẻ



Đọc tiếp...
 
Lần đầu tiên giải thưởng Fields được trao tặng cho một nhà toán học nữ
15/08/2014
Ở Đại hội quốc tế các nhà toán học ICM 2014 đang diễn ra ở Seoul, lần đầu tiên giải thưởng Fields được trao tặng cho một nhà toán học nữ: Maryam Mirzakhani. Ban tổ chức có những đoạn phim ngắn giới thiệu Maryam Mirzakhani và ba nhà toán học khác cùng được giải Fields lần này:
http://www.icm2014.org/en/awards/prizes/f4
Đọc tiếp...
 
Đoàn của Đại học Quản lí Singapore (SMU) thăm Khoa Toán-Tin
29/05/2014
Đoàn của Đại học Quản lí Singapore (Singapore Management University) sẽ thăm Khoa Toán-Tin học vào chiều ngày Thứ ba 3/6/2014. Các nghiên cứu của nhóm này liên quan tới thu thập và xử lí thông tin từ mạng.

Chuyến thăm này tiếp tục chuyến thăm hè năm 2013, qua đó phía SMU đã tuyển được người sang học tiến sĩ:
http://www.math.hcmus.edu.vn/index.php?option=com_content&task=view&id=1640

Chương trình chuyến thăm năm nay tương tự năm trước (xem bên dưới): giới thiệu về các trung tâm, cho thi GRE, phỏng vấn tuyển người. Trong đoàn SMU có nghiên cứu sinh người Việt đi cùng. Bài thi GRE là miễn phí và tự do.

Mời các thầy cô quan tâm, các sinh viên và ứng viên tới dự.

Thời gian: 14g ngày Thứ ba 3/6/2014, Phòng I42. (Tổ chức chung với Khoa Công nghệ Thông tin).

·         Meeting with HCMUS’s faculty member: talking about research updates and seeking for collaboration opportunities with HCMUS.

·         SMU seminar: giving 30-minute talk to introduce PhD program of the SMU School of Information Systems (SIS) (http://sis.smu.edu.sg/), and brief introduction/updates on LiveLabs Urban Lifestyle Innovation Platform (LiveLabs)  (http://livelabs.smu.edu.sg/ ). We would like to ask for your help to encourage excellent students interested in PhD studies to attend the talk and meet us.

·         GRE-equivalent test (for the potential PhD applicants): We will administer a SMU’s test which are GRE-equivalent test. The test details are: (1) 130 minutes test including 5 minute break (2) multiple choices for quantitative and verbal sections (similar format in GRE test) (3) no analytical writing section. The students who do this test will be exempted from submitting GRE scores when they apply to our PhD program. It will be great if you could advise the students know about the test so that they can be ready for it. We may conduct an informal short-interview with the potential applicants.

·         Recruitment for other research positions: we have several other research positions (for research engineers and post-docs), so we can do an informal interview if anyone is interested.

o   Reference: http://livelabs.smu.edu.sg/career/  and  http://smu.edu.sg/centres/larc/employment/

Đọc tiếp...
 
Trường hè" Toán học cho sinh viên" năm 2014
28/05/2014

Viện Toán học cần tuyển 06 sinh viên xuất sắc nhất vừa học xong năm 1, 2, 3 (mỗi khóa tối đa 02 sinh viên) để cử ra Viện Toán học tham dự Trường hè.
Địa điểm tổ chức của trường hè là Viện Toán học
Chi phí đi lại bằng tàu (vé tàu ngồi mềm), Kí túc xá của trường ĐHSP Hà Nội và hỗ trợ một phần sinh hoạt phí.
Hạn chót đăng ký: hết ngày 10/06/2014 tại Văn phòng Khoa Toán - Tin học. (Nộp kèm bảng điểm tích lũy)
Thông tin chi tiết xem trên web
http://www.viasm.edu.vn

Đọc tiếp...
 
<< Bắt đầu < Trước 1 2 3 4 5 6 7 8 9 Tiếp > Cuối >>

Khoa Toán - Tin học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia TP Hồ Chí Minh.
Phòng F.009, cơ sở 227 Nguyễn Văn Cừ, Quận 5, TP HCM.